Transcendence of e and π

نویسندگان

  • Constanze Liaw
  • Henning Arnór Úlfarsson
چکیده

When proving it is impossible to ‘square’ the circle by a ruler–and–compass construction we have to appeal to the theorem that π is transcendental. It is our goal to prove this theorem. Since the algebraic numbers are the roots of integer polynomials, they are countably many. Cantor’s proof in 1874 of the uncountability of the real numbers guaranteed the existence of (uncountably many) transcendental numbers. Thirty years earlier Liouville had actually constructed the transcendental number +∞ ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the possible exceptions for the transcendence of the log-gamma function at rational values and its consequences for the transcendence of log π and π e

In a recent work published in this journal [JNT 129, 2154 (2009)], it has been argued that the numbers log Γ(x) + log Γ(1− x), x being a rational number between 0 and 1, are transcendental with at most one possible exception, but the proof presented there is incorrect. Here in this paper, I point out the mistake committed in that proof and I present a theorem that establishes the transcendence ...

متن کامل

Math 249 A Fall 2010 : Transcendental Number Theory

α is algebraic if there exists p ∈ Z[x], p 6= 0 with p(α) = 0, otherwise α is called transcendental . Cantor: Algebraic numbers are countable, so transcendental numbers exist, and are a measure 1 set in [0, 1], but it is hard to prove transcendence for any particular number. Examples of (proported) transcendental numbers: e, π, γ, e, √ 2 √ 2 , ζ(3), ζ(5) . . . Know: e, π, e, √ 2 √ 2 are transce...

متن کامل

L - Series and Transcendental Numbers

This paper is a survey of some recent work of mine done jointly with V. Kumar Murty, N. Saradha, S. Gun and P. Rath. In all of these works, the motivating question is the following. Given an automorphic representation π , we consider the L-series L(s, π) attached to π according to the Langlands formalism. We are interested in the possible transcendence of special values L(k, π) when k is a posi...

متن کامل

University of Natural Sciences Introduction to Diophantine Methods: Irrationality and Transcendence

1 Irrationality 3 1.1 Simple proofs of irrationality . . . . . . . . . . . . . . . . . . . . 3 1.2 Variation on a proof by Fourier (1815) . . . . . . . . . . . . . . . 10 1.2.1 Irrationality of e . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.2 The number e is not quadratic . . . . . . . . . . . . . . . 11 1.2.3 Irrationality of e √ 2 (Following a suggestion of D.M. Masser) . . . . . . . ...

متن کامل

Introduction to Diophantine methods irrationality and transcendence

1 Irrationality 3 1.1 Simple proofs of irrationality . . . . . . . . . . . . . . . . . . . . 3 1.1.1 History of irrationality . . . . . . . . . . . . . . . . . . . . 10 1.2 Variation on a proof by Fourier (1815) . . . . . . . . . . . . . . . 12 1.2.1 Irrationality of e . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.2 The number e is not quadratic . . . . . . . . . . . . . . . 13 1.2.3 Irr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006